# AP® Physics 2: Algebra-Based Cheat Sheet

Master AP Physics 2: Algebra-Based with this cheat sheet from Examples.com. It covers key concepts and formulas in fluids, thermodynamics, circuits, optics, and more, perfect for exam preparation and quick reference.

Download Physics 2 Cheat Sheet – Pdf

## Unit 1: Fluids

**Density**: \(\rho = \frac{m}{V}\)- m = mass, V = volume

**Pressure**: P = \(\frac{F}{A}\)- F = force, A = area

**Pascal’s Principle**: \(P₁ = P₂\) (Pressure applied at any point in an incompressible fluid is transmitted undiminished)**Continuity Equation**: \(A_1v_1 = A_2v_2\)- A = cross-sectional area, v = fluid velocity

**Bernoulli’s Equation**: \(P_1 + \frac{1}{2}\rho v_1^2 + \rho gh_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho gh_2\)**Archimedes’ Principle**: \(F_b = \rho_{fluid} \cdot V_{displaced} \cdot g\)- \(F_b\) = buoyant force

## Unit 2: Thermodynamics

**Temperature Conversion**:- T(K)=T(°C)+273.15

**Ideal Gas Law**: PV=nRT- P = pressure, V = volume, n = number of moles, R = ideal gas constant, T = temperature

**Kinetic Theory**: \(\frac{3}{2} k_B T = \frac{1}{2} mv_{rms}^2\)**First Law of Thermodynamics**: ΔU = Q − W- Q = heat added, W = work done by the system

**Heat Transfer**: Q=mcΔT- Q = heat, m = mass, c = specific heat, ΔT = change in temperature

**Heat Engine Efficiency**: \(\eta = \frac{W_{out}}{Q_{in}}\)

## Unit 3: Electric Force, Field, and Potential

**Coulomb’s Law**: \(F_e = k_e \frac{|q_1q_2|}{r^2}\)- \(k_e = 8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2\)

**Electric Field**: \(E = \frac{F_e}{q} = k_e \frac{|q|}{r^2}\)**Electric Potential Energy**: \(U = k_e \frac{q_1q_2}{r}\)**Electric Potential**: \(V = \frac{U}{q} = k_e \frac{q}{r}\)**Capacitance**: \(C = \frac{Q}{V}\)- Q = charge, V = voltage

**Parallel Plate Capacitor**: \(C = \frac{\epsilon_0 A}{d}\)- \(\epsilon_0\) = permittivity of free space, A = area, d = separation between plates

## Unit 4: Circuits

**Ohm’s Law**: V = IR- V = voltage, I = current, R = resistance

**Resistors in Series**: \(R_{eq} = R_1 + R_2 + \cdots\)**Resistors in Parallel**: \(\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots\)**Power**: \(P = IV = I^2R = \frac{V^2}{R}\)**Kirchhoff’s Rules**:**Junction Rule**: \(\sum I_{in} = \sum I_{out}\)**Loop Rule**: \(\sum \Delta V = 0\)

**Capacitors in Series**: \(\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots\)**Capacitors in Parallel**: \(C_{eq} = C_1 + C_2 + \cdots\)

## Unit 5: Magnetism & Electromagnetic Induction

**Magnetic Force on a Charge**: \(F_B = qvB \sin \theta\)- q = charge, v = velocity, B = magnetic field

**Magnetic Force on a Wire**: \(F_B = ILB \sin \theta\)- I = current, L = length of wire, B = magnetic field

**Ampère’s Law**: \(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\)**Faraday’s Law**: \(\mathcal{E} = -\frac{d\Phi_B}{dt}\)- \(\Phi_B\) = magnetic flux

**Lenz’s Law**: The induced emf always opposes the change in magnetic flux**Inductance**: \(V = L \frac{dI}{dt}\)

## Unit 6: Geometric & Physical Optics

**Snell’s Law**: \(n_1 \sin \theta_1 = n_2 \sin \theta_2\)- n = refractive index

**Lens/Mirror Equation**: \(\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}\)- f = focal length, \(d_o\) = object distance, \(d_i\) = image distance

**Magnification**: \(M = -\frac{d_i}{d_o}\)**Critical Angle**: \(\sin \theta_c = \frac{n_2}{n_1}\) (for total internal reflection)**Young’s Double-Slit Experiment**:- \(x = \frac{\lambda L}{d}\)
- x = fringe spacing, \(\lambda\) = wavelength, L = distance to screen, d = slit separation

- \(x = \frac{\lambda L}{d}\)
**Diffraction Grating**: \(d \sin \theta = m\lambda d\)- mmm = order of diffraction

## Unit 7: Quantum, Atomic, & Nuclear Physics

**Photon Energy**: \(E = hf = \frac{hc}{\lambda}\)- \(h = 6.626 \times 10^{-34}\) J·s (Planck’s constant)

**Photoelectric Effect**: \(K_ₘₐₓ =- \(\phi\) = work function

**de Broglie Wavelength**: \(\lambda = \frac{h}{p}\)- ppp = momentum

**Heisenberg Uncertainty Principle**: \(\Delta x \cdot \Delta p \geq \frac{h}{4\pi}\)**Radioactive Decay**:- \(N(t) = N_0 e^{-\lambda t}\)
- \(\lambda = \text{decay constant}\)

**Mass-Energy Equivalence**: \(E = mc^2\)

**FRQ Tips**

**Show All Work**: Even if the final answer is incorrect, partial credit can be given for correct procedures.**Use Units**: Always include units in your answers.**Simplify Expressions**: If you’re stuck, simplify the problem using symmetry or limiting cases.**Graph Sketching**: For graph-based questions, label axes, and indicate critical points like maximums, minimums, and intercepts.**Equation Manipulation**: Keep track of all variables and constants during equation manipulation to avoid mistakes.