Square Root

Team Maths - Examples.com
Created by: Team Maths - Examples.com, Last Updated: May 2, 2024

Square Root

Exploring square roots delves into fundamental aspects of mathematics, including rational and irrational numbers, algebraic manipulation, and the properties of squares and square roots. Rooted in integer operations, square roots extend to real numbers, showcasing the intricate relationship between numerical values and their origins. Understanding square roots is essential in algebraic equations, polynomial functions, and geometric problems, as well as in statistical analysis, where they serve as a basis for measures of dispersion and estimation techniques. By exploring the depths of least square, we uncover the nuances of number theory and the intricate connections between mathematical concepts, laying the foundation for advanced mathematical exploration and problem-solving.

What is Square Root?

The square root of a number is a value that, when multiplied by itself, yields the original number. In mathematical terms, if √𝑎=𝑏, then 𝑏×𝑏=𝑎. The square root function is denoted by the symbol ​√, and it returns the non-negative square root of a real number. For example, the square root of 9 is 3, because 3×3 = 9. However, it’s important to note that some numbers, such as negative numbers, do not have real square roots, leading to the concept of imaginary numbers.

Square Root Definition

The square root of a number is a value that, when multiplied by itself, equals the original number. It is denoted by the symbol √ and represents the non-negative root of a real number.

Square Root Formula

n√x = x¹/ⁿ

The square root of a number with an exponent of 1/2 is expressed using the formula: n√x = x¹/ⁿ​. When 𝑛=2, it’s called the square root. Various methods like prime factorization can be employed to find it. For instance, 4¹/² = √4 = √2×2 = 2. Thus, the formula for expressing the square root of a number is √x = x¹/ⁿ​.

How to Find Square Root?

To find the square root of a number, you can use various methods such as:

  • Prime Factorization: Decompose the number into its prime factors and then pair them up, taking one factor from each pair. The product of these factors gives the square root.
  • Estimation: Make an initial guess for the square root and refine it using iterative methods like Newton’s method or the Babylonian method.
  • Long Division: Perform long division to find the square root by dividing the number into groups of two digits and finding the largest integer whose square is less than or equal to each group.
  • Using a Calculator: Utilize a scientific calculator or software that includes a square root function to compute the square root directly.

Repeated Subtraction Method of Square Root

  • Start with an Initial Guess: Begin with a guess for the square root of the given number.
  • Square the Guess: Square the initial guess to obtain a tentative square value.
  • Compare Squares: Compare the tentative square value with the original number. If it matches, the guess is correct, and it represents the square root of the number. If it’s too large, decrease the guess; if it’s too small, increase the guess.
  • Repeat the Process: Continue adjusting the guess and recalculating the square until you find a value that is close enough to the original number.
  • Refine the Guess: Refine the guess using a more systematic approach if necessary, such as halving the difference between the guess and the target number.
  • Verify: Verify the result by squaring the found square root to ensure it equals the original number within an acceptable margin of error.

Square Root by Prime Factorization Method

Let’s find the square root of a different number, such as 324, using the Prime Factorization Method:

Given number: 324

Step 1: Prime Factorization of 324:

  • 324 = 2²×3⁴

Step 2: Form pairs of factors:

  • We have 2² and 3⁴. Both factors are already in pairs.

Step 3: Take one factor from each pair:

  • We take one factor from 2² (choosing 2) and one factor from 3⁴ (choosing 3²).

Step 4: Find the product of the factors:

  • 2×3²=18

Step 5: The product (18) is the square root of the given number (324).

So, the square root of 324 is 18, as 18×18 = 324.

Finding Square Root by Estimation Method

Let’s use the Estimation Method to find the square root of a different number, such as √21.

Given number: 21

Find the Nearest Perfect Square Numbers:

  • The perfect square numbers nearest to 21 are 16 and 25. We know that √16 = 4 and √25 = 5. Therefore, √21 lies between 4 and 5.

Check Between 4 and 5:

  • Consider the midpoint between 4 and 5, which is 4.5. Squaring 4.5 gives 20.25, and squaring 5 gives 25. Since 21 is closer to 20.25 than to 25, √21 is closer to 4.5 than to 5.

Refine the Estimate:

  • Next, check between 4.5 and 5. We can use 4.7 and 4.8 as our estimates. Squaring 4.7 gives 22.09, and squaring 4.8 gives 23.04. Since 21 is closer to 22.09, √21 is closer to 4.7 than to 4.8.

Continue Refining:

  • Repeat the process as needed, checking between 4.7 and 4.8. We can observe that √21 = 4.58 (approximately).

This method allows us to approximate the square root of 21 with reasonable accuracy, even though it may require some iteration.

Calculating Square Root by Long Division Method

Let’s find the square root of a different number, such as 325, using the Long Division Method:

Given number: 325

Step 1: Group the digits into pairs starting from the right: 3|25

Step 2: Find the largest digit that, when squared, is less than or equal to 3. Since 1² = 1, the first digit of the square root is 1.

Step 3: Subtract 1² from 3, resulting in a remainder of 2. Bring down the next pair of digits (25) to the right of the remainder.

Step 4: Double the current root (1) and write it as the divisor (2). Find the largest digit to append to 1 to form a number less than or equal to 25. 12 × 2 = 24, and 13 × 3 = 39. So, we choose 2 as the next digit of the square root.

Step 5: Subtract 12² from 225, resulting in a remainder of 25. Bring down the next pair of digits (00) to the right of the remainder.

Step 6: Double the current root (12) and write it as the divisor (24). Find the largest digit to append to 12 to form a number less than or equal to 250. 240 × 0 = 0, and 241 × 1 = 241. So, we choose 0 as the next digit of the square root.

Step 7: Subtract 120^2 from 2500, resulting in a remainder of 500. Since we’ve run out of digits in the dividend, the division process stops here.

So, the square root of 325 is approximately equal to 18.027.

Square Root Table

NumberSquare Root
11
21.414
31.732
42
52.236
62.449
72.646
82.828
93
103.162
113.317
123.464
133.606
143.742
153.873
164
174.123
184.243
194.359
204.472
214.583
224.690
234.796
244.899
255

The numbers that are not perfect squares are irrational numbers.This table lists the square roots of numbers from 1 to 25, providing a quick reference for their respective square root values.

Simplifying Square Root

Simplifying square roots involves reducing them to their simplest form by factoring out any perfect square factors from the radicand. For example, √12 can be simplified as √(4 × 3), and since 4 is a perfect square, we can simplify it to 2√3.

This is because the rule of simplifying square root is √xy = √(x × y), where, x and y are positive integers.

Square Root of a Negative Number

The square root of a negative number is not a real number within the set of real numbers. In the set of complex numbers, the square root of a negative number is represented as an imaginary number. For example, the square root of -1 is denoted as √(-1) = i, where i is the imaginary unit.

Square of a Number

The square of a number is obtained by multiplying the number by itself. For example, the square of 5 is 5 × 5 = 25. In mathematical notation, it is represented as 𝑥², where 𝑥 is the number being squared.

How to Find the Square of a Number?

  1. Pick a Number: Choose the number you want to square.
  2. Multiply: Multiply the number by itself. For example, to find the square of 5, you would calculate 5×5.
  3. Calculate: Perform the multiplication. In the example, 5×5 = 25.

So, the square of 5 is 25. You can apply this process to any number to find its square.

Squares and Square Roots

Squares and square roots are inverse operations in mathematics.

  • Squaring a number involves multiplying it by itself, resulting in a square. For example, the square of 3 is 9 because 3×3 = 9.
  • Square rooting a number involves finding a number that, when multiplied by itself, equals the given number. For example, the square root of 9 is 5 because 3×3 = 9.

Squares and square roots are fundamental concepts used in various mathematical operations, including algebra, geometry, and calculus.

Difference Between Squares and square Roots

OperationSquaresSquare Roots
DefinitionResult of multiplying a number by itself.Number that, when multiplied by itself, equals the given number.
NotationExpressed as 𝑥2x2, where 𝑥x is the number being squared.Denoted as 𝑥x​, where 𝑥x is the number whose square root is being found.
Example52=2552=2525=525​=5
Inverse OperationNoneInverse operation of squaring.
OutcomeAlways positive or zero.Can be positive, negative, or zero.

While squares yield positive or zero results, square roots can yield positive, negative, or zero results depending on the number being square rooted.

Square Root of Numbers

Square Root of 1Square Root of 2Square Root of 3Square Root of 4Square Root of 5
Square Root of 6Square Root of 7Square Rootof 8Square Root of 9Square Root of 10
Square Root of 11Square Root of 12Square Root of 13Square Root of 14Square Root of 15
Square Root of 16Square Root of 17Square Root of 18Square Root of 19Square Root of 20
Square Root of 21Square Root of 22Square Root of 23Square Root of 24Square Root of 25
Square Root of 26Square Root of 27Square Root of 28Square Root of 29Square Root of 30
Square Root of 31Square Root of 32Square Root of 33Square Root of 34Square Root of 35
Square Root of 36Square Root of 37Square Root of 38Square Root of 39Square Root of 40
Square Root of 41Square Root of 42Square Root of 43Square Root of 44Square Root of 45
Square Root of 46Square Root of 47Square Root of 48Square Root of 49Square Root of 50
Square Root of 51Square Root of 52Square Root of 53Square Root of 54Square Root of 55
Square Root of 56Square Root of 57Square Rootof 58Square Root of 59Square Root of 60
Square Root of 61Square Root of 62Square Root of 63Square Root of 64Square Root of 65
Square Root of 66Square Root of 67Square Root of 68Square Root of 69Square Root of 70
Square Root of 71Square Root of 72Square Root of 73Square Root of 74Square Root of 75
Square Root of 76Square Root of 77Square Root of 78Square Root of 79Square Root of 80
Square Root of 81Square Root of 82Square Root of 83Square Root of 84Square Root of 85
Square Root of 86Square Root of 87Square Root of 88Square Root of 89Square Root of 90
Square Root of 91Square Root of 92Square Root of 93Square Root of 94Square Root of 95
Square Root of 96Square Root of 97Square Root of 98Square Root of 99Square Root of 100

Each entry represents the square root of the corresponding number from 1 to 100. For example, the square root of 1 is 1, the square root of 2 is approximately 1.414, and so on up to the square root of 100, which is 10.

Examples on Square Root

  • The square root of 9 is 3 because 3×3 = 9.
  • The square root of 25 is 5 because 5×5 = 25.
  • The square root of 16 is 4 because 4×4 = 16.
  • The square root of 36 is 6 because 6×6 = 36.
  • The square root of 100 is 10 because 10×10 = 100.

FAQs

Can square roots be negative?

In the real number system, square roots of non-negative numbers are always non-negative. However, in the complex number system, square roots of negative numbers are represented as imaginary numbers.

How can I calculate a square root without a calculator?

You can use various methods such as the long division method, prime factorization, estimation, or repeated subtraction to find square roots manually.

What are some real-life applications of square roots?

Square roots are used in various fields such as geometry, physics, engineering, finance, and computer science. For example, they are used to calculate distances, areas, volumes, and in algorithms for data analysis.

AI Generator

Text prompt

Add Tone

10 Examples of Public speaking

20 Examples of Gas lighting