What is the square root of 144?
11
12
13
14
A Square Root Table is an invaluable tool in mathematics that provides the square roots of numbers, facilitating quicker computation and deeper understanding of both rational and irrational numbers. This resource is integers in algebra and other mathematical disciplines, where knowledge of square and square roots simplifies complex calculations and problem-solving. Additionally, such tables are useful in statistical analyses and the least squares method, helping to accurately model data and predict outcomes. By offering immediate access to square roots, these tables enhance learning and application in various mathematical contexts, from basic arithmetic to advanced numerical analysis.
Number | Square Root (√) |
---|---|
√1 | 1.00 |
√2 | 1.41 |
√3 | 1.73 |
√4 | 2.00 |
√5 | 2.24 |
√6 | 2.45 |
√7 | 2.65 |
√8 | 2.83 |
√9 | 3.00 |
√10 | 3.16 |
√11 | 3.32 |
√12 | 3.46 |
√13 | 3.61 |
√14 | 3.74 |
√15 | 3.87 |
√16 | 4.00 |
√17 | 4.12 |
√18 | 4.24 |
√19 | 4.36 |
√20 | 4.47 |
√21 | 4.58 |
√22 | 4.69 |
√23 | 4.80 |
√24 | 4.90 |
√25 | 5.00 |
√26 | 5.10 |
√27 | 5.20 |
√28 | 5.29 |
√29 | 5.39 |
√30 | 5.48 |
√31 | 5.57 |
√32 | 5.66 |
√33 | 5.74 |
√34 | 5.83 |
√35 | 5.92 |
√36 | 6.00 |
√37 | 6.08 |
√38 | 6.16 |
√39 | 6.24 |
√40 | 6.32 |
√41 | 6.40 |
√42 | 6.48 |
√43 | 6.56 |
√44 | 6.63 |
√45 | 6.71 |
√46 | 6.78 |
√47 | 6.86 |
√48 | 6.93 |
√49 | 7.00 |
√50 | 7.07 |
√51 | 7.14 |
√52 | 7.21 |
√53 | 7.28 |
√54 | 7.35 |
√55 | 7.42 |
√56 | 7.48 |
√57 | 7.55 |
√58 | 7.62 |
√59 | 7.68 |
√60 | 7.75 |
√61 | 7.81 |
√62 | 7.87 |
√63 | 7.94 |
√64 | 8.00 |
√65 | 8.06 |
√66 | 8.12 |
√67 | 8.19 |
√68 | 8.25 |
√69 | 8.31 |
√70 | 8.37 |
√71 | 8.43 |
√72 | 8.49 |
√73 | 8.54 |
√74 | 8.60 |
√75 | 8.66 |
√76 | 8.72 |
√77 | 8.77 |
√78 | 8.83 |
√79 | 8.89 |
√80 | 8.94 |
√81 | 9.00 |
√82 | 9.06 |
√83 | 9.11 |
√84 | 9.17 |
√85 | 9.22 |
√86 | 9.27 |
√87 | 9.33 |
√88 | 9.38 |
√89 | 9.43 |
√90 | 9.49 |
√91 | 9.54 |
√92 | 9.59 |
√93 | 9.64 |
√94 | 9.70 |
√95 | 9.75 |
√96 | 9.80 |
√97 | 9.85 |
√98 | 9.90 |
√99 | 9.95 |
√100 | 10.00 |
√101 | 10.05 |
√102 | 10.10 |
√103 | 10.15 |
√104 | 10.20 |
√105 | 10.25 |
√106 | 10.30 |
√107 | 10.35 |
√108 | 10.39 |
√109 | 10.44 |
√110 | 10.49 |
√111 | 10.54 |
√112 | 10.58 |
√113 | 10.63 |
√114 | 10.68 |
√115 | 10.72 |
√116 | 10.77 |
√117 | 10.82 |
√118 | 10.86 |
√119 | 10.91 |
√120 | 10.95 |
√121 | 11.00 |
√122 | 11.04 |
√123 | 11.09 |
√124 | 11.13 |
√125 | 11.18 |
√126 | 11.22 |
√127 | 11.27 |
√128 | 11.31 |
√129 | 11.36 |
√130 | 11.40 |
√131 | 11.44 |
√132 | 11.49 |
√133 | 11.53 |
√134 | 11.58 |
√135 | 11.62 |
√136 | 11.66 |
√137 | 11.71 |
√138 | 11.75 |
√139 | 11.79 |
√140 | 11.84 |
√141 | 11.88 |
√142 | 11.92 |
√143 | 11.96 |
√144 | 12.00 |
√145 | 12.04 |
√146 | 12.08 |
√147 | 12.13 |
√148 | 12.17 |
√149 | 12.21 |
√150 | 12.25 |
√151 | 12.29 |
√152 | 12.33 |
√153 | 12.37 |
√154 | 12.41 |
√155 | 12.45 |
√156 | 12.49 |
√157 | 12.53 |
√158 | 12.57 |
√159 | 12.61 |
√160 | 12.65 |
√161 | 12.69 |
√162 | 12.73 |
√163 | 12.77 |
√164 | 12.81 |
√165 | 12.85 |
√166 | 12.89 |
√167 | 12.92 |
√168 | 12.96 |
√169 | 13.00 |
√170 | 13.04 |
√171 | 13.08 |
√172 | 13.11 |
√173 | 13.15 |
√174 | 13.19 |
√175 | 13.23 |
√176 | 13.26 |
√177 | 13.30 |
√178 | 13.34 |
√179 | 13.38 |
√180 | 13.41 |
√181 | 13.45 |
√182 | 13.49 |
√183 | 13.52 |
√184 | 13.56 |
√185 | 13.60 |
√186 | 13.63 |
√187 | 13.67 |
√188 | 13.70 |
√189 | 13.74 |
√190 | 13.78 |
√191 | 13.81 |
√192 | 13.85 |
√193 | 13.88 |
√194 | 13.92 |
√195 | 13.95 |
√196 | 14.00 |
√197 | 14.03 |
√198 | 14.07 |
√199 | 14.10 |
√200 | 14.14 |
Number | Square Root (√) |
---|---|
√2 | 1.41 |
√4 | 2.00 |
√6 | 2.45 |
√8 | 2.83 |
√10 | 3.16 |
√12 | 3.46 |
√14 | 3.74 |
√16 | 4.00 |
√18 | 4.24 |
√20 | 4.47 |
√22 | 4.69 |
√24 | 4.90 |
√26 | 5.10 |
√28 | 5.29 |
√30 | 5.48 |
√32 | 5.66 |
√34 | 5.83 |
√36 | 6.00 |
√38 | 6.16 |
√40 | 6.32 |
√42 | 6.48 |
√44 | 6.63 |
√46 | 6.78 |
√48 | 6.93 |
√50 | 7.07 |
√52 | 7.21 |
√54 | 7.35 |
√56 | 7.48 |
√58 | 7.62 |
√60 | 7.75 |
√62 | 7.87 |
√64 | 8.00 |
√66 | 8.12 |
√68 | 8.25 |
√70 | 8.37 |
√72 | 8.49 |
√74 | 8.60 |
√76 | 8.72 |
√78 | 8.83 |
√80 | 8.94 |
√82 | 9.06 |
√84 | 9.17 |
√86 | 9.27 |
√88 | 9.38 |
√90 | 9.49 |
√92 | 9.59 |
√94 | 9.70 |
√96 | 9.80 |
√98 | 9.90 |
√100 | 10.00 |
√102 | 10.10 |
√104 | 10.20 |
√106 | 10.30 |
√108 | 10.39 |
√110 | 10.49 |
√112 | 10.58 |
√114 | 10.68 |
√116 | 10.77 |
√118 | 10.86 |
√120 | 10.95 |
√122 | 11.04 |
√124 | 11.13 |
√126 | 11.22 |
√128 | 11.31 |
√130 | 11.40 |
√132 | 11.49 |
√134 | 11.58 |
√136 | 11.66 |
√138 | 11.75 |
√140 | 11.84 |
√142 | 11.92 |
√144 | 12.00 |
√146 | 12.08 |
√148 | 12.17 |
√150 | 12.25 |
√152 | 12.33 |
√154 | 12.41 |
√156 | 12.49 |
√158 | 12.57 |
√160 | 12.65 |
√162 | 12.73 |
√164 | 12.81 |
√166 | 12.89 |
√168 | 12.96 |
√170 | 13.04 |
√172 | 13.11 |
√174 | 13.19 |
√176 | 13.26 |
√178 | 13.34 |
√180 | 13.41 |
√182 | 13.49 |
√184 | 13.56 |
√186 | 13.63 |
√188 | 13.70 |
√190 | 13.78 |
√192 | 13.85 |
√194 | 13.92 |
√196 | 14.00 |
√198 | 14.07 |
√200 | 14.14 |
Number | Square Root (Approx.) |
---|---|
√1 | 1.00 |
√3 | 1.73 |
√5 | 2.24 |
√7 | 2.65 |
√9 | 3.00 |
√11 | 3.32 |
√13 | 3.61 |
√15 | 3.87 |
√17 | 4.12 |
√19 | 4.36 |
√21 | 4.58 |
√23 | 4.80 |
√25 | 5.00 |
√27 | 5.20 |
√29 | 5.39 |
√31 | 5.57 |
√33 | 5.74 |
√35 | 5.92 |
√37 | 6.08 |
√39 | 6.24 |
√41 | 6.40 |
√43 | 6.56 |
√45 | 6.71 |
√47 | 6.86 |
√49 | 7.00 |
√51 | 7.14 |
√53 | 7.28 |
√55 | 7.42 |
√57 | 7.55 |
√59 | 7.68 |
√61 | 7.81 |
√63 | 7.94 |
√65 | 8.06 |
√67 | 8.19 |
√69 | 8.31 |
√71 | 8.43 |
√73 | 8.54 |
√75 | 8.66 |
√77 | 8.77 |
√79 | 8.89 |
√81 | 9.00 |
√83 | 9.11 |
√85 | 9.22 |
√87 | 9.33 |
√89 | 9.43 |
√91 | 9.54 |
√93 | 9.64 |
√95 | 9.75 |
√97 | 9.85 |
√99 | 9.95 |
√101 | 10.05 |
√103 | 10.15 |
√105 | 10.25 |
√107 | 10.35 |
√109 | 10.44 |
√111 | 10.54 |
√113 | 10.63 |
√115 | 10.72 |
√117 | 10.82 |
√119 | 10.91 |
√121 | 11.00 |
√123 | 11.09 |
√125 | 11.18 |
√127 | 11.27 |
√129 | 11.36 |
√131 | 11.44 |
√133 | 11.53 |
√135 | 11.62 |
√137 | 11.71 |
√139 | 11.79 |
√141 | 11.88 |
√143 | 11.96 |
√145 | 12.04 |
√147 | 12.13 |
√149 | 12.21 |
√151 | 12.29 |
√153 | 12.37 |
√155 | 12.45 |
√157 | 12.53 |
√159 | 12.61 |
√161 | 12.69 |
√163 | 12.77 |
√165 | 12.85 |
√167 | 12.92 |
√169 | 13.00 |
√171 | 13.08 |
√173 | 13.15 |
√175 | 13.23 |
√177 | 13.30 |
√179 | 13.38 |
√181 | 13.45 |
√183 | 13.52 |
√185 | 13.60 |
√187 | 13.67 |
√189 | 13.74 |
√191 | 13.81 |
√193 | 13.88 |
√195 | 13.95 |
√197 | 14.03 |
√199 | 14.10 |
Number | Square Root (√) |
---|---|
√1 | 1 |
√4 | 2 |
√9 | 3 |
√16 | 4 |
√25 | 5 |
√36 | 6 |
√49 | 7 |
√64 | 8 |
√81 | 9 |
√100 | 10 |
√121 | 11 |
√144 | 12 |
√169 | 13 |
√196 | 14 |
Number | Square Root (√) |
---|---|
√2 | 1.41 |
√3 | 1.73 |
√5 | 2.24 |
√6 | 2.45 |
√7 | 2.65 |
√8 | 2.83 |
√10 | 3.16 |
√11 | 3.32 |
√12 | 3.46 |
√13 | 3.61 |
√14 | 3.74 |
√15 | 3.87 |
√17 | 4.12 |
√18 | 4.24 |
√19 | 4.36 |
√20 | 4.47 |
√21 | 4.58 |
√22 | 4.69 |
√23 | 4.80 |
√24 | 4.90 |
√26 | 5.10 |
√27 | 5.20 |
√28 | 5.29 |
√29 | 5.39 |
√30 | 5.48 |
√31 | 5.57 |
√32 | 5.66 |
√33 | 5.74 |
√34 | 5.83 |
√35 | 5.92 |
√37 | 6.08 |
√38 | 6.16 |
√39 | 6.24 |
√40 | 6.32 |
√41 | 6.40 |
√42 | 6.48 |
√43 | 6.56 |
√44 | 6.63 |
√45 | 6.71 |
√46 | 6.78 |
√47 | 6.86 |
√48 | 6.93 |
√50 | 7.07 |
√51 | 7.14 |
52 | 7.21 |
√53 | 7.28 |
√54 | 7.35 |
√55 | 7.42 |
√56 | 7.48 |
√57 | 7.55 |
√58 | 7.62 |
√59 | 7.68 |
√60 | 7.75 |
√61 | 7.81 |
√62 | 7.87 |
√63 | 7.94 |
√65 | 8.06 |
√66 | 8.12 |
√67 | 8.19 |
√68 | 8.25 |
√69 | 8.31 |
√70 | 8.37 |
√71 | 8.43 |
√72 | 8.49 |
√73 | 8.54 |
√74 | 8.60 |
√75 | 8.66 |
√76 | 8.72 |
√77 | 8.77 |
√78 | 8.83 |
√79 | 8.89 |
√80 | 8.94 |
√82 | 9.06 |
√83 | 9.11 |
√84 | 9.17 |
√85 | 9.22 |
√86 | 9.27 |
√87 | 9.33 |
√88 | 9.38 |
√89 | 9.43 |
√90 | 9.49 |
√91 | 9.54 |
√92 | 9.59 |
√93 | 9.64 |
√94 | 9.70 |
√95 | 9.75 |
√96 | 9.80 |
√97 | 9.85 |
√98 | 9.90 |
√99 | 9.95 |
√101 | 10.05 |
√102 | 10.10 |
√103 | 10.15 |
√104 | 10.20 |
√105 | 10.25 |
√106 | 10.30 |
√107 | 10.35 |
√108 | 10.39 |
√109 | 10.44 |
√110 | 10.49 |
√111 | 10.54 |
√112 | 10.58 |
√113 | 10.63 |
√114 | 10.68 |
√115 | 10.72 |
√116 | 10.77 |
√117 | 10.82 |
√118 | 10.86 |
√119 | 10.91 |
√120 | 10.95 |
√122 | 11.04 |
√123 | 11.09 |
√124 | 11.13 |
√125 | 11.18 |
√126 | 11.22 |
√127 | 11.27 |
√128 | 11.31 |
√129 | 11.36 |
√130 | 11.40 |
√131 | 11.44 |
√132 | 11.49 |
√133 | 11.53 |
√134 | 11.58 |
√135 | 11.62 |
√136 | 11.66 |
√137 | 11.71 |
√138 | 11.75 |
√139 | 11.79 |
√140 | 11.84 |
√141 | 11.88 |
√142 | 11.92 |
√143 | 11.96 |
√145 | 12.04 |
√146 | 12.08 |
√147 | 12.13 |
√148 | 12.17 |
√149 | 12.21 |
√150 | 12.25 |
√151 | 12.29 |
√152 | 12.33 |
√153 | 12.37 |
√154 | 12.41 |
√155 | 12.45 |
√156 | 12.49 |
√157 | 12.53 |
√158 | 12.57 |
√159 | 12.61 |
√160 | 12.65 |
√161 | 12.69 |
√162 | 12.73 |
√163 | 12.77 |
√164 | 12.81 |
√165 | 12.85 |
√166 | 12.89 |
√167 | 12.92 |
√168 | 12.96 |
√170 | 13.04 |
√171 | 13.08 |
√172 | 13.11 |
√173 | 13.15 |
√174 | 13.19 |
√175 | 13.23 |
√176 | 13.26 |
√177 | 13.30 |
√178 | 13.34 |
√179 | 13.38 |
√180 | 13.41 |
√181 | 13.45 |
√182 | 13.49 |
√183 | 13.52 |
√184 | 13.56 |
√185 | 13.60 |
√186 | 13.63 |
√187 | 13.67 |
√188 | 13.70 |
√189 | 13.74 |
√190 | 13.78 |
√191 | 13.81 |
√192 | 13.85 |
√193 | 13.88 |
√194 | 13.92 |
√195 | 13.95 |
√197 | 14.03 |
√198 | 14.07 |
√199 | 14.10 |
√200 | 14.14 |
A square root table is a valuable mathematical resource that provides quick access to square root values of numbers. Understanding its properties can enhance its utilization in various mathematical contexts, from elementary education to advanced studies. Here are some key properties and characteristics of a square root table:
The table includes both rational and irrational numbers. Square roots of perfect squares (like 1, 4, 9, 16, …) are rational, whereas square roots of non-perfect squares (like 2, 3, 5, …) are irrational. This highlights the diversity of number types in algebra and provides a practical demonstration of rational versus irrational numbers.
While digital tools like calculators and software have largely replaced the need for manual lookup tables in practical applications, square root tables still hold educational value. They help students understand the concept of square roots and number properties more concretely and provide a historical perspective on mathematical computations.
Yes, square root tables help illustrate the difference between rational and irrational numbers. Square roots of perfect squares are rational numbers, while square roots of non-perfect squares are typically irrational. This contrast can be clearly seen and understood through a square root table.
The range can vary depending on the table, but most educational square root tables cover numbers from 1 to at least 100 or 200. Some might go even higher to cater to more advanced mathematical applications or studies.
A Square Root Table is an invaluable tool in mathematics that provides the square roots of numbers, facilitating quicker computation and deeper understanding of both rational and irrational numbers. This resource is integers in algebra and other mathematical disciplines, where knowledge of square and square roots simplifies complex calculations and problem-solving. Additionally, such tables are useful in statistical analyses and the least squares method, helping to accurately model data and predict outcomes. By offering immediate access to square roots, these tables enhance learning and application in various mathematical contexts, from basic arithmetic to advanced numerical analysis.
A square root of a number is a value that, when multiplied by itself, equals the original number. It’s represented symbolically as √, with the number of interest under the radical sign. Square roots are fundamental in various mathematical d
Number | Square Root (√) |
---|---|
√1 | 1.00 |
√2 | 1.41 |
√3 | 1.73 |
√4 | 2.00 |
√5 | 2.24 |
√6 | 2.45 |
√7 | 2.65 |
√8 | 2.83 |
√9 | 3.00 |
√10 | 3.16 |
√11 | 3.32 |
√12 | 3.46 |
√13 | 3.61 |
√14 | 3.74 |
√15 | 3.87 |
√16 | 4.00 |
√17 | 4.12 |
√18 | 4.24 |
√19 | 4.36 |
√20 | 4.47 |
√21 | 4.58 |
√22 | 4.69 |
√23 | 4.80 |
√24 | 4.90 |
√25 | 5.00 |
√26 | 5.10 |
√27 | 5.20 |
√28 | 5.29 |
√29 | 5.39 |
√30 | 5.48 |
√31 | 5.57 |
√32 | 5.66 |
√33 | 5.74 |
√34 | 5.83 |
√35 | 5.92 |
√36 | 6.00 |
√37 | 6.08 |
√38 | 6.16 |
√39 | 6.24 |
√40 | 6.32 |
√41 | 6.40 |
√42 | 6.48 |
√43 | 6.56 |
√44 | 6.63 |
√45 | 6.71 |
√46 | 6.78 |
√47 | 6.86 |
√48 | 6.93 |
√49 | 7.00 |
√50 | 7.07 |
√51 | 7.14 |
√52 | 7.21 |
√53 | 7.28 |
√54 | 7.35 |
√55 | 7.42 |
√56 | 7.48 |
√57 | 7.55 |
√58 | 7.62 |
√59 | 7.68 |
√60 | 7.75 |
√61 | 7.81 |
√62 | 7.87 |
√63 | 7.94 |
√64 | 8.00 |
√65 | 8.06 |
√66 | 8.12 |
√67 | 8.19 |
√68 | 8.25 |
√69 | 8.31 |
√70 | 8.37 |
√71 | 8.43 |
√72 | 8.49 |
√73 | 8.54 |
√74 | 8.60 |
√75 | 8.66 |
√76 | 8.72 |
√77 | 8.77 |
√78 | 8.83 |
√79 | 8.89 |
√80 | 8.94 |
√81 | 9.00 |
√82 | 9.06 |
√83 | 9.11 |
√84 | 9.17 |
√85 | 9.22 |
√86 | 9.27 |
√87 | 9.33 |
√88 | 9.38 |
√89 | 9.43 |
√90 | 9.49 |
√91 | 9.54 |
√92 | 9.59 |
√93 | 9.64 |
√94 | 9.70 |
√95 | 9.75 |
√96 | 9.80 |
√97 | 9.85 |
√98 | 9.90 |
√99 | 9.95 |
√100 | 10.00 |
√101 | 10.05 |
√102 | 10.10 |
√103 | 10.15 |
√104 | 10.20 |
√105 | 10.25 |
√106 | 10.30 |
√107 | 10.35 |
√108 | 10.39 |
√109 | 10.44 |
√110 | 10.49 |
√111 | 10.54 |
√112 | 10.58 |
√113 | 10.63 |
√114 | 10.68 |
√115 | 10.72 |
√116 | 10.77 |
√117 | 10.82 |
√118 | 10.86 |
√119 | 10.91 |
√120 | 10.95 |
√121 | 11.00 |
√122 | 11.04 |
√123 | 11.09 |
√124 | 11.13 |
√125 | 11.18 |
√126 | 11.22 |
√127 | 11.27 |
√128 | 11.31 |
√129 | 11.36 |
√130 | 11.40 |
√131 | 11.44 |
√132 | 11.49 |
√133 | 11.53 |
√134 | 11.58 |
√135 | 11.62 |
√136 | 11.66 |
√137 | 11.71 |
√138 | 11.75 |
√139 | 11.79 |
√140 | 11.84 |
√141 | 11.88 |
√142 | 11.92 |
√143 | 11.96 |
√144 | 12.00 |
√145 | 12.04 |
√146 | 12.08 |
√147 | 12.13 |
√148 | 12.17 |
√149 | 12.21 |
√150 | 12.25 |
√151 | 12.29 |
√152 | 12.33 |
√153 | 12.37 |
√154 | 12.41 |
√155 | 12.45 |
√156 | 12.49 |
√157 | 12.53 |
√158 | 12.57 |
√159 | 12.61 |
√160 | 12.65 |
√161 | 12.69 |
√162 | 12.73 |
√163 | 12.77 |
√164 | 12.81 |
√165 | 12.85 |
√166 | 12.89 |
√167 | 12.92 |
√168 | 12.96 |
√169 | 13.00 |
√170 | 13.04 |
√171 | 13.08 |
√172 | 13.11 |
√173 | 13.15 |
√174 | 13.19 |
√175 | 13.23 |
√176 | 13.26 |
√177 | 13.30 |
√178 | 13.34 |
√179 | 13.38 |
√180 | 13.41 |
√181 | 13.45 |
√182 | 13.49 |
√183 | 13.52 |
√184 | 13.56 |
√185 | 13.60 |
√186 | 13.63 |
√187 | 13.67 |
√188 | 13.70 |
√189 | 13.74 |
√190 | 13.78 |
√191 | 13.81 |
√192 | 13.85 |
√193 | 13.88 |
√194 | 13.92 |
√195 | 13.95 |
√196 | 14.00 |
√197 | 14.03 |
√198 | 14.07 |
√199 | 14.10 |
√200 | 14.14 |
Square Root of 22 | Square Root of 23 | |||
Square Root of 31 | Square Root of 33 | |||
Square Root of 38 | Square Root of 39 | |||
Square Root of 43 | ||||
Square Root of 46 | Square Root of 47 | |||
Square Root of 51 | Square Root of 53 | Square Root of 54 | Square Root of 55 | |
Square Root of 57 | Square Root of 58 | Square Root of 59 | ||
Square Root of 62 | Square Root of 63 | Square Root of 65 | ||
Square Root of 66 | Square Root of 67 | Square Root of 68 | ||
Square Root of 71 | Square Root of 73 | Square Root of 74 | ||
Square Root of 76 | Square Root of 77 | Square Root of 78 | Square Root of 79 | |
Square Root of 82 | Square Root of 83 | Square Root of 84 | ||
Square Root of 86 | Square Root of 87 | Square Root of 88 | Square Root of 89 | |
Square Root of 91 | Square Root of 92 | Square Root of 93 | Square Root of 94 | Square Root of 95 |
Square Root of 97 |
Number | Square Root (√) |
---|---|
√2 | 1.41 |
√4 | 2.00 |
√6 | 2.45 |
√8 | 2.83 |
√10 | 3.16 |
√12 | 3.46 |
√14 | 3.74 |
√16 | 4.00 |
√18 | 4.24 |
√20 | 4.47 |
√22 | 4.69 |
√24 | 4.90 |
√26 | 5.10 |
√28 | 5.29 |
√30 | 5.48 |
√32 | 5.66 |
√34 | 5.83 |
√36 | 6.00 |
√38 | 6.16 |
√40 | 6.32 |
√42 | 6.48 |
√44 | 6.63 |
√46 | 6.78 |
√48 | 6.93 |
√50 | 7.07 |
√52 | 7.21 |
√54 | 7.35 |
√56 | 7.48 |
√58 | 7.62 |
√60 | 7.75 |
√62 | 7.87 |
√64 | 8.00 |
√66 | 8.12 |
√68 | 8.25 |
√70 | 8.37 |
√72 | 8.49 |
√74 | 8.60 |
√76 | 8.72 |
√78 | 8.83 |
√80 | 8.94 |
√82 | 9.06 |
√84 | 9.17 |
√86 | 9.27 |
√88 | 9.38 |
√90 | 9.49 |
√92 | 9.59 |
√94 | 9.70 |
√96 | 9.80 |
√98 | 9.90 |
√100 | 10.00 |
√102 | 10.10 |
√104 | 10.20 |
√106 | 10.30 |
√108 | 10.39 |
√110 | 10.49 |
√112 | 10.58 |
√114 | 10.68 |
√116 | 10.77 |
√118 | 10.86 |
√120 | 10.95 |
√122 | 11.04 |
√124 | 11.13 |
√126 | 11.22 |
√128 | 11.31 |
√130 | 11.40 |
√132 | 11.49 |
√134 | 11.58 |
√136 | 11.66 |
√138 | 11.75 |
√140 | 11.84 |
√142 | 11.92 |
√144 | 12.00 |
√146 | 12.08 |
√148 | 12.17 |
√150 | 12.25 |
√152 | 12.33 |
√154 | 12.41 |
√156 | 12.49 |
√158 | 12.57 |
√160 | 12.65 |
√162 | 12.73 |
√164 | 12.81 |
√166 | 12.89 |
√168 | 12.96 |
√170 | 13.04 |
√172 | 13.11 |
√174 | 13.19 |
√176 | 13.26 |
√178 | 13.34 |
√180 | 13.41 |
√182 | 13.49 |
√184 | 13.56 |
√186 | 13.63 |
√188 | 13.70 |
√190 | 13.78 |
√192 | 13.85 |
√194 | 13.92 |
√196 | 14.00 |
√198 | 14.07 |
√200 | 14.14 |
Number | Square Root (Approx.) |
---|---|
√1 | 1.00 |
√3 | 1.73 |
√5 | 2.24 |
√7 | 2.65 |
√9 | 3.00 |
√11 | 3.32 |
√13 | 3.61 |
√15 | 3.87 |
√17 | 4.12 |
√19 | 4.36 |
√21 | 4.58 |
√23 | 4.80 |
√25 | 5.00 |
√27 | 5.20 |
√29 | 5.39 |
√31 | 5.57 |
√33 | 5.74 |
√35 | 5.92 |
√37 | 6.08 |
√39 | 6.24 |
√41 | 6.40 |
√43 | 6.56 |
√45 | 6.71 |
√47 | 6.86 |
√49 | 7.00 |
√51 | 7.14 |
√53 | 7.28 |
√55 | 7.42 |
√57 | 7.55 |
√59 | 7.68 |
√61 | 7.81 |
√63 | 7.94 |
√65 | 8.06 |
√67 | 8.19 |
√69 | 8.31 |
√71 | 8.43 |
√73 | 8.54 |
√75 | 8.66 |
√77 | 8.77 |
√79 | 8.89 |
√81 | 9.00 |
√83 | 9.11 |
√85 | 9.22 |
√87 | 9.33 |
√89 | 9.43 |
√91 | 9.54 |
√93 | 9.64 |
√95 | 9.75 |
√97 | 9.85 |
√99 | 9.95 |
√101 | 10.05 |
√103 | 10.15 |
√105 | 10.25 |
√107 | 10.35 |
√109 | 10.44 |
√111 | 10.54 |
√113 | 10.63 |
√115 | 10.72 |
√117 | 10.82 |
√119 | 10.91 |
√121 | 11.00 |
√123 | 11.09 |
√125 | 11.18 |
√127 | 11.27 |
√129 | 11.36 |
√131 | 11.44 |
√133 | 11.53 |
√135 | 11.62 |
√137 | 11.71 |
√139 | 11.79 |
√141 | 11.88 |
√143 | 11.96 |
√145 | 12.04 |
√147 | 12.13 |
√149 | 12.21 |
√151 | 12.29 |
√153 | 12.37 |
√155 | 12.45 |
√157 | 12.53 |
√159 | 12.61 |
√161 | 12.69 |
√163 | 12.77 |
√165 | 12.85 |
√167 | 12.92 |
√169 | 13.00 |
√171 | 13.08 |
√173 | 13.15 |
√175 | 13.23 |
√177 | 13.30 |
√179 | 13.38 |
√181 | 13.45 |
√183 | 13.52 |
√185 | 13.60 |
√187 | 13.67 |
√189 | 13.74 |
√191 | 13.81 |
√193 | 13.88 |
√195 | 13.95 |
√197 | 14.03 |
√199 | 14.10 |
Number | Square Root (√) |
---|---|
√1 | 1 |
√4 | 2 |
√9 | 3 |
√16 | 4 |
√25 | 5 |
√36 | 6 |
√49 | 7 |
√64 | 8 |
√81 | 9 |
√100 | 10 |
√121 | 11 |
√144 | 12 |
√169 | 13 |
√196 | 14 |
Number | Square Root (√) |
---|---|
√2 | 1.41 |
√3 | 1.73 |
√5 | 2.24 |
√6 | 2.45 |
√7 | 2.65 |
√8 | 2.83 |
√10 | 3.16 |
√11 | 3.32 |
√12 | 3.46 |
√13 | 3.61 |
√14 | 3.74 |
√15 | 3.87 |
√17 | 4.12 |
√18 | 4.24 |
√19 | 4.36 |
√20 | 4.47 |
√21 | 4.58 |
√22 | 4.69 |
√23 | 4.80 |
√24 | 4.90 |
√26 | 5.10 |
√27 | 5.20 |
√28 | 5.29 |
√29 | 5.39 |
√30 | 5.48 |
√31 | 5.57 |
√32 | 5.66 |
√33 | 5.74 |
√34 | 5.83 |
√35 | 5.92 |
√37 | 6.08 |
√38 | 6.16 |
√39 | 6.24 |
√40 | 6.32 |
√41 | 6.40 |
√42 | 6.48 |
√43 | 6.56 |
√44 | 6.63 |
√45 | 6.71 |
√46 | 6.78 |
√47 | 6.86 |
√48 | 6.93 |
√50 | 7.07 |
√51 | 7.14 |
52 | 7.21 |
√53 | 7.28 |
√54 | 7.35 |
√55 | 7.42 |
√56 | 7.48 |
√57 | 7.55 |
√58 | 7.62 |
√59 | 7.68 |
√60 | 7.75 |
√61 | 7.81 |
√62 | 7.87 |
√63 | 7.94 |
√65 | 8.06 |
√66 | 8.12 |
√67 | 8.19 |
√68 | 8.25 |
√69 | 8.31 |
√70 | 8.37 |
√71 | 8.43 |
√72 | 8.49 |
√73 | 8.54 |
√74 | 8.60 |
√75 | 8.66 |
√76 | 8.72 |
√77 | 8.77 |
√78 | 8.83 |
√79 | 8.89 |
√80 | 8.94 |
√82 | 9.06 |
√83 | 9.11 |
√84 | 9.17 |
√85 | 9.22 |
√86 | 9.27 |
√87 | 9.33 |
√88 | 9.38 |
√89 | 9.43 |
√90 | 9.49 |
√91 | 9.54 |
√92 | 9.59 |
√93 | 9.64 |
√94 | 9.70 |
√95 | 9.75 |
√96 | 9.80 |
√97 | 9.85 |
√98 | 9.90 |
√99 | 9.95 |
√101 | 10.05 |
√102 | 10.10 |
√103 | 10.15 |
√104 | 10.20 |
√105 | 10.25 |
√106 | 10.30 |
√107 | 10.35 |
√108 | 10.39 |
√109 | 10.44 |
√110 | 10.49 |
√111 | 10.54 |
√112 | 10.58 |
√113 | 10.63 |
√114 | 10.68 |
√115 | 10.72 |
√116 | 10.77 |
√117 | 10.82 |
√118 | 10.86 |
√119 | 10.91 |
√120 | 10.95 |
√122 | 11.04 |
√123 | 11.09 |
√124 | 11.13 |
√125 | 11.18 |
√126 | 11.22 |
√127 | 11.27 |
√128 | 11.31 |
√129 | 11.36 |
√130 | 11.40 |
√131 | 11.44 |
√132 | 11.49 |
√133 | 11.53 |
√134 | 11.58 |
√135 | 11.62 |
√136 | 11.66 |
√137 | 11.71 |
√138 | 11.75 |
√139 | 11.79 |
√140 | 11.84 |
√141 | 11.88 |
√142 | 11.92 |
√143 | 11.96 |
√145 | 12.04 |
√146 | 12.08 |
√147 | 12.13 |
√148 | 12.17 |
√149 | 12.21 |
√150 | 12.25 |
√151 | 12.29 |
√152 | 12.33 |
√153 | 12.37 |
√154 | 12.41 |
√155 | 12.45 |
√156 | 12.49 |
√157 | 12.53 |
√158 | 12.57 |
√159 | 12.61 |
√160 | 12.65 |
√161 | 12.69 |
√162 | 12.73 |
√163 | 12.77 |
√164 | 12.81 |
√165 | 12.85 |
√166 | 12.89 |
√167 | 12.92 |
√168 | 12.96 |
√170 | 13.04 |
√171 | 13.08 |
√172 | 13.11 |
√173 | 13.15 |
√174 | 13.19 |
√175 | 13.23 |
√176 | 13.26 |
√177 | 13.30 |
√178 | 13.34 |
√179 | 13.38 |
√180 | 13.41 |
√181 | 13.45 |
√182 | 13.49 |
√183 | 13.52 |
√184 | 13.56 |
√185 | 13.60 |
√186 | 13.63 |
√187 | 13.67 |
√188 | 13.70 |
√189 | 13.74 |
√190 | 13.78 |
√191 | 13.81 |
√192 | 13.85 |
√193 | 13.88 |
√194 | 13.92 |
√195 | 13.95 |
√197 | 14.03 |
√198 | 14.07 |
√199 | 14.10 |
√200 | 14.14 |
A square root table is a valuable mathematical resource that provides quick access to square root values of numbers. Understanding its properties can enhance its utilization in various mathematical contexts, from elementary education to advanced studies. Here are some key properties and characteristics of a square root table:
The square root table lists numbers and their corresponding square roots in a sequential manner. As the numbers increase, their square roots also increase, but the rate of increase gradually slows down. This is because the function 𝑓(𝑥) = √𝑥 is a concave function, meaning as 𝑥 increases, the rate of change of 𝑥 decreases.
The table includes both rational and irrational numbers. Square roots of perfect squares (like 1, 4, 9, 16, …) are rational, whereas square roots of non-perfect squares (like 2, 3, 5, …) are irrational. This highlights the diversity of number types in algebra and provides a practical demonstration of rational versus irrational numbers.
Square root values exhibit symmetry around certain points. For example, the difference in square root values between successive squares (like between 1 and 4, 4 and 9, 9 and 16) decreases as numbers get larger. This pattern helps in estimating square roots of numbers that are not listed in the table.
The table can be used for estimating square roots of numbers that are not perfect squares. By locating the two nearest perfect square roots, users can interpolate to estimate the square root of a given number, which is particularly useful in numerical and engineering fields.
Square root tables are excellent educational tools, helping students understand the concept of square roots without the need for calculative aids. They also serve as a quick reference in problem-solving situations, especially in exams or when computational devices are not available.
Before the widespread availability of calculators and computers, square root tables were essential in many scientific and engineering calculations. They represent an important historical aspect of computational mathematics.
Understanding the properties and patterns in square root values can lead to deeper insights into more complex mathematical theories, such as quadratic equations, the Pythagorean theorem, and calculus. It also ties into statistical methods like the least squares method used for data fitting and prediction.
While digital tools like calculators and software have largely replaced the need for manual lookup tables in practical applications, square root tables still hold educational value. They help students understand the concept of square roots and number properties more concretely and provide a historical perspective on mathematical computations.
Yes, square root tables help illustrate the difference between rational and irrational numbers. Square roots of perfect squares are rational numbers, while square roots of non-perfect squares are typically irrational. This contrast can be clearly seen and understood through a square root table.
The range can vary depending on the table, but most educational square root tables cover numbers from 1 to at least 100 or 200. Some might go even higher to cater to more advanced mathematical applications or studies.
Text prompt
Add Tone
10 Examples of Public speaking
20 Examples of Gas lighting
What is the square root of 144?
11
12
13
14
Which number has a square root of 8?
56
58
64
81
Find the square root of 121.
10
11
13
12
What is the square root of 25?
2
3
4
5
Which number squared equals 36?
5
6
7
8
What is the square root of 196?
14
15
16
17
Find the square root of 49.
6
7
8
9
Which number has a square root of 10?
90
100
110
120
What is the square root of 81?
8
9
10
11
Find the square root of 64.
7
8
9
10
Before you leave, take our quick quiz to enhance your learning!